Abstract

AbstractThe aim of this study was to develop an efficient and realistic numerical model in order to predict the dynamic response of the friction winder system. The absolute nodal coordinate formulation is an ideal approach for the modelling of friction winder systems. In this study, the rope was modelled as a planar beam element based on an absolute nodal coordinate formulation. The rope element allows the user to control the axial and bending stiffness through the use of two parameters. In this study, the interaction between the rope and the rotating drum is modelled using an elastic approach in which the contact is accounted for by the inclusion of a set of external forces that depend on the penetration between the rope and rotating drum. This made it possible for us to accurately predict the contact forces, including the stick and slip zones between the rope and the drum. Finally, the applicability of the friction winder model was presented and discussed.KeywordsFriction WinderAbsolute Nodal Coordinate FormulationFrictional ContactBeam Elements

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.