Abstract

<div>Vehicles equipped with rubber track systems feature a high level of performance but are challenging to design due to the complex components involved and the large number of degrees of freedom, thus raising the need to develop validated numerical simulation tools.</div> <div>In this article, a multibody dynamics (MBD) model of a continuous rubber track system developed in Part 1 is compared with extensive experimental data to evaluate the model accuracy over a wide range of operating conditions (tractor speed and rear axle load). The experiment consists of crossing an instrumented bump-shaped obstacle with a tractor equipped with a pair of rubber track systems on the rear axle. Experimental responses are synchronized with simulation results using a cross-correlation approach.</div> <div>The vertical and longitudinal maximum forces predicted by the model, respectively, show average relative errors of 34% and 39% compared to experimental data (1–16 km/h). In both cases, the average relative error is lower for tractor speed from 1 to 7 km/h, namely 20% and 35%. The model and experimental amplitudes spectra of the force signals are compared using the coefficient of determination <i>r</i><sup>2</sup>. In the 1 to 7 km/h tractor speed range, the average vertical and longitudinal coefficients of determination are, respectively, 0.83 and 0.42. The coefficients, respectively, reduce to 0.27 and 0.14 for speeds over 7 km/h.</div> <div>In summary, the model can predict the maximum vertical and longitudinal forces in addition to the amplitude spectrum of those signals for operating conditions up to 7 km/h, regardless of the rear axle load, with accuracy acceptable for many applications, such as load case determination for preliminary structural design. Several factors affecting the accuracy of the model at higher tractor speed are identified for future work including suspension creeping, suspension compression characterization at high strain rates, and temperature dependence of material properties.</div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.