Abstract

Uncontrollable shaking in the human wrist, caused by pathological tremor, can significantly undermine the power and accuracy in object manipulation. In this paper, the design of a tremor alleviating wrist exoskeleton (TAWE) is introduced. Unlike the works in the literature that only consider the flexion/extension (FE) motion, in this paper, we model the wrist joint as a constrained three-dimensional (3D) rotational joint accounting for the coupled FE and radial/ulnar deviation (RUD) motions. Hence TAWE, which features a six degrees-of-freedom (DOF) rigid linkage structure, aims to accurately monitor, suppress tremors, and provide light-power augmentation in both FE and RUD wrist motions. The presented study focuses on providing a fundamental understanding of the feasibility of TAWE through theoretical analyses. The analytical multibody modeling of the forearm-TAWE assembly provides insight into the necessary conditions for control, which indicates that reliable control conditions in the desired workspace can be acquired by tuning the design parameters. Nonlinear regressions are then implemented to identify the information that is crucial to the controller design from the unknown wrist kinematics. The proposed analytical model is validated numerically with V-REP and the result shows good agreement. Simulations also demonstrate the reliable performance of TAWE under controllers designed for tremor suppression and movement assistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.