Abstract

Progress in adapting molecular dynamics algorithms for systems with short-range interactions to utilize the features of modern supercomputers is described. Efficient utilization of the latest generation of processor architectures requires algorithms that can be both vectorized and parallelized. The approach adopted for vectorization involves combining the layer and neighbor-list methods, while parallelization employs spatial subdivision with explicit communication. The techniques presented here have been used in performance tests on the Cray X1 vector-parallel supercomputer with systems containing over 12 billion atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.