Abstract

A 3-D-printed Luneburg lens with a novel simplified geometry is presented. The rod-type structures are employed as the unit cell of the gradient-index material to realize the required permittivity distribution in the lens. A prototype designed in the Ka-band is manufactured successfully by using a commercial 3-D printing facility. The substrate-integrated waveguide fed magnetoelectric (ME)-dipole antenna with endfire radiation is introduced as the feed for the Luneburg lens due to its wideband performance and compact configuration. By combining the lens with a set of the ME-dipoles, a millimeter-wave (mm-wave) multibeam Luneburg lens antenna is designed, fabricated, and measured. An overlapped impedance bandwidth of wider than 40% that can cover the entire Ka-band and mutual coupling below -17 dB are verified by the fabricated prototype. Nine stable radiation beams with a scanning range between ±61°, gain up to 21.2 dBi with a variation of 2.6 dB, and radiation efficiency of around 75% are achieved as well. With the advantages of good operating features, low fabrication costs, and ease of integration, the proposed multibeam Luneburg lens antenna would be a promising candidate for the fifth-generation (5G) mm-wave multiple-input multiple-output (MIMO) applications in 28 and 38 GHz bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call