Abstract

The three-dimensional (3-D) structure of forests, especially the vertical structure, is an important parameter of forest ecosystem modeling for monitoring ecological change. Synthetic aperture radar tomography (TomoSAR) provides scene reflectivity estimation of vegetation along elevation coordinates. Due to the advantages of super-resolution imaging and a small number of measurements, distribution compressive sensing (DCS) inversion techniques for polarimetric SAR tomography were successfully developed and applied. This paper addresses the 3-D imaging of forested areas based on the framework of DCS using fully polarimetric (FP) multi-baseline SAR interferometric (MB-InSAR) tomography at the P-band. A new DCS-based FP TomoSAR method is proposed: a new wavelet-based distributed compressive sensing FP TomoSAR method (FP-WDCS TomoSAR method). The method takes advantage of the joint sparsity between polarimetric channel signals in the wavelet domain to jointly inverse the reflectivity profiles in each channel. The method not only allows high accuracy and super-resolution imaging with a low number of acquisitions, but can also obtain the polarization information of the vertical structure of forested areas. The effectiveness of the techniques for polarimetric SAR tomography is demonstrated using FP P-band airborne datasets acquired by the ONERA SETHI airborne system over a test site in Paracou, French Guiana. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

Highlights

  • This paper addresses the 3-D imaging of forested areas based on the framework of distribution compressive sensing (DCS) using fully polarimetric (FP) multibaseline synthetic aperture radar (SAR) interferometric (MB-InSAR) tomography at the P-band

  • By using multiple baseline acquisitions along the direction of elevation, synthetic aperture radar tomography (TomoSAR) can extend conventional two-dimensional (2-D) SAR imaging to a three-dimensional (3-D) reconstruction

  • We proposed a new DCS framework-based FP MB-InSAR tomography method that allows a jointly reflectivity profile reconstruction from FP channels in forested areas along the elevation direction using signals acquired from a small number of orbits and different polarization channels

Read more

Summary

Introduction

By using multiple baseline acquisitions along the direction of elevation, synthetic aperture radar tomography (TomoSAR) can extend conventional two-dimensional (2-D) SAR imaging to a three-dimensional (3-D) reconstruction. For every azimuth-range pixel, this technique can reconstruct the reflectivity function along the elevation direction (this direction is perpendicular to the azimuth and range direction) by using the formation of an additional synthetic aperture in elevation In this way, SAR tomography can lead to a refined analysis of volume structures, namely forested areas. In order to further discriminate and characterize the objects under analysis using their polarimetric responses, they extended this method to the FP case.[17] In the process of signal recovery, the method in Ref. 17 takes advantage of the inter-signal correlations between scattering mechanisms by means of distributed compressive sensing (DCS), which enables the joint recovery of multisignal ensembles through exploiting their joint sparsity.

Tomographic Synthetic Aperture Radar Imaging Model
Covariance Matching-Based Tomographic Synthetic Aperture Radar
Distributed Compressive Sensing
Datasets
Super-Resolution Power of the Compressive Sensing Framework-Based Estimator
Real Data
Conclusions and Future Work

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.