Abstract

The interference of multiple condensates coexisting in one system may lead to unconventional coherent behavior. This is expected when the spatial lengths of the condensates are essentially different. Traditionally, the characteristic spatial length of a superconducting condensate is associated with the gap function. However, the broader readership is more familiar with the concept of the Cooper-pair wave function. For conventional single-band superconductors, the gap function coincides with the center-of-mass Cooper-pair wave function up to the coupling constant, and the corresponding gap and wave function characteristic lengths are the same. Surprisingly, we find that in two-band superconductors, these lengths are the same only near the critical temperature. At lower temperatures, they can significantly deviate from each other, and the fundamental question of which of these lengths should be preferred when specifying the spatial scale of a band-dependent condensate in multiband superconducting materials arises.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call