Abstract

Abstract We collect new and archival optical observations of nine “black-widow” millisecond pulsar binaries. New measurements include direct imaging with the Keck, Gemini-S, MDM, and Las Cumbres Observatory 2 m telescopes. This is supplemented by synthesized colors from Keck long-slit spectra. Four black-widow optical companions are presented here for the first time. Together these data provide multicolor photometry covering a large fraction of the orbital phase. We fit these light curves with a direct (photon) heating model using a version of the ICARUS light-curve modeling code. The fits provide distance and fill-factor estimates, inclinations, and heating powers. We compare the heating powers with the observed GeV luminosities, noting that the ratio is sensitive to pulsar distance and to the gamma-ray beaming. We make a specific correction for “outer gap” model beams, but even then some sources are substantially discrepant, suggesting imperfect beaming corrections and/or errors in the fit distance. The fits prefer large metal abundance for half of the targets, a reasonable result for these wind-stripped secondaries. The companion radii indicate substantial Roche-lobe filling, f c ≈ 0.7−1 except for PSR J0952−0607, which with f c < 0.5 has a companion density ρ ≈ 10 g cm−3, suggesting unusual evolution. We note that the direct-heating fits imply large heating powers and rather small inclinations, and we speculate that unmodeled effects can introduce such bias.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.