Abstract

We investigate the theoretical band structure of organic-inorganic perovskites APbX3 with tetragonal crystal structure. Using D4h point group symmetry properties, we derive a general 16-band Hamiltonian describing the electronic band diagram in the vicinity of the wave-vector point corresponding to the direct band gap. For bulk crystals, a very good agreement between our predictions and experimental physical parameters, as band gap energies and effective carrier masses, is obtained. Extending this description to three-dimensional confined hybrid halide perovskite, we calculate the size dependence of the excitonic radiative lifetime and fine structure. We describe the exciton fine structure of cube-shaped nanocrystals by an interplay of crystal-field and electron-hole exchange interaction (short- and long-range parts) enhanced by confinement. Using very recent experimental results on FAPbBr3 nanocrystals, we extract the bulk short-range exchange interaction in this material and predict its value in other hybrid compounds. Finally, we also predict the bright-bright and bright-dark splittings as a function of nanocrystal size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.