Abstract

This paper presents a novel method for semantic segmentation and object recognition in a road scene using a hierarchical bag-of-textons method. Current driving-assistance systems rely on multiple vehicle-mounted cameras to perceive the road environment. The proposed method relies on integrated color and near-infrared images and uses the hierarchical bag-of-textons method to recognize the spatial configuration of objects and extract contextual information from the background. The histogram of the hierarchical bag-of-textons is concatenated to textons extracted from a multiscale grid window to automatically learn the spatial context for semantic segmentation. Experimental results show that the proposed method has better segmentation accuracy than the conventional bag-of-textons method. By integrating it with other scene interpretation systems, the proposed system can be used to understand road scenes for vehicle environment perception.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.