Abstract

We present broadband (radio, optical, X-ray and GeV) fits to the afterglow light curves and spectra of three long-duration gamma-ray bursts (GRBs 080916C, 090902B, and 090926A) detected by the Gamma-Ray Burst Monitor and Large Area Telescope (LAT) instruments on the Fermi satellite. Using the observed broadband data, we study the origin of the high energy emission, and suggest that the early-time GeV emission and the late-time radio, optical, and X-ray afterglows can be understood as being due to synchrotron emission from an external forward shock caused by structured ejecta propagating in a wind bubble jumping to a homogeneous density medium. If the ceasing time for a majority of the energy injection is assumed to be close to the deceleration time of the forward shock, the structured ejecta with continuous energy injection towards the forward shock can well explain the early rising feature of the GeV mission from these bursts, and the density-jump medium can account for some particular plateaus or flares in the late afterglows. From our fits, we find that, on one hand, the external shock origin of the GeV photons will make the optical depth not have a significant contribution to the early LAT rising part, which will loosen the strong constraint of lower limits of the Lorentz factor. On the other hand, these Fermi-LAT events preferentially occur in a low-density circumburst environment, in which case the Klein-Nishina cutoff will significantly suppress the Self-Synchrotron Compton radiation. Such an environment might result from superbubbles or low-metallicity progenitor stars (which have a low mass-loss rate at late times of stellar evolution) of type Ib/c supernovae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.