Abstract

Major depressive disorder (MDD) is a global health challenge with high prevalence. Further, many diagnosed with MDD are treatment resistant to traditional antidepressants. Repetitive transcranial magnetic stimulation (rTMS) offers promise as an alternative solution, but identifying objective biomarkers for predicting treatment response remains underexplored. Electroencephalographic (EEG) recordings are a cost-effective neuroimaging approach, but traditional EEG analysis methods often do not consider patient-specific variations and fail to capture complex neuronal dynamics. To address this, we propose a data-driven approach combining iterated masking empirical mode decomposition (itEMD) and sparse Bayesian learning (SBL). Our results demonstrated significant prediction of rTMS outcomes using this approach (Protocol 1: r=0.40, p<0.01; Protocol 2: r=0.26, p<0.05). From the decomposition, we obtained three key oscillations: IMF-Alpha, IMF-Beta, and the remaining residue. We also identified key spatial patterns associated with treatment outcomes for two rTMS protocols: for Protocol 1 (10Hz left DLPFC), important areas include the left frontal and parietal regions, while for Protocol 2 (1Hz right DLPFC), the left and frontal, left parietal regions are crucial. Additionally, our exploratory analysis found few significant correlations between oscillation specific predictive features and personality measures. This study highlights the potential of machine learning-driven EEG analysis for personalized MDD treatment prediction, offering a pathway for improved patient outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.