Abstract

In many laser processing applications, galvanometer scanners are integrated to a larger system that creates external disturbances to the actual laser-material interaction. To reject such disturbance with feedback-based control schemes, the sampling of the output needs to be fast enough to capture all major frequency components of the disturbance. In some applications, however, the sensor's sampling speed is limited, such that the disturbance is beyond the sampler's Nyquist frequency. This paper introduces a multi-rate control scheme to fully reject narrow-band beyond-Nyquist disturbances in galvanometer scanner systems. The proposed algorithm consists of a special bandpass filter with tailored frequency response, and a model-based predictor that reconstructs signals from limited sensor data. Verification of this algorithm is conducted by both simulated and experimental results on a commercial galvanometer scanner testbed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.