Abstract

Textile structural composites are widely used in various industrial sections, such as civil and defense (Dow and Dexter, 1997; Kamiya et al., 2000) as they have some better specific properties compared to the basic materials such as metal and ceramics (Ko & Chou 1989; Chou, 1992). Research conducted on textile structural composites indicated that they can be considered as alternative materials since they are delamination-free and damage tolerant (Cox et al, 1993; Ko & Chou 1989). From a textile processing viewpoint they are readily available, cheap, and not labour intensive (Dow and Dexter, 1997). The textile preform fabrication is done by weaving, braiding, knitting, stitching, and by using nonwoven techniques, and they can be chosen generally based on the end-use requirements. Originally three dimensional (3D) preforms can be classified according to fiber interlacement types. Simple 3D preform consists of two dimensional (2D) fabrics and is stitched depending on stack sequence. More sophisticated 3D preforms are fabricated by specially designed automated loom and manufactured to near-net shape to reduce scrap (Brandt et. al., 2001; Mohamed, 1990). However, it is mentioned that their low in-plane properties are partly due to through-the-thickness fiber reinforcement (Bilisik and Mohamed, 1994; Dow and Dexter, 1997; Kamiya et al., 2000). Multiaxis knitted preform, which has four fiber sets as ±bias, warp(0 ) and weft(90 ) and stitching fibers enhances in-plane properties (Dexter and Hasko, 1996). It was explained that multiaxis knitted preform suffers from limitation in fiber architecture, through-thickness reinforcement due to the thermoplastic stitching thread and three dimensional shaping during molding (Ko & Chou 1989). Multiaxis 3D woven preform is developed in the specially developed multiaxis 3D weaving and it’s in-plane properties are improved by orienting the fiber in the preform (Mohamed and Bilisik, 1995; Uchida et al, 2000). The aim of this chapter is to review the 3D fabrics, production methods and techniques. Properties of 3D woven composites are also provided with possible specific end-uses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.