Abstract

Based on the damage ratio strength theory, a dimensionless damage ratio strength criterion for fiber-reinforced concrete (FRC) under true triaxial stress states was established under the assumption of small strains. Based on the experimental data of steel fiber–reinforced concrete (SFRC), polypropylene fiber–reinforced concrete (PFRC), hybrid fiber–reinforced concrete (HFRC), and steel fiber–reinforced high-performance lightweight concrete (SFRHLC), parameters for the damage ratio criterion were recommended. The damage ratio values were verified by SFRC experimental results under uniaxial, biaxial, and triaxial loading conditions, and the damage ratio values of SFRC under uniaxial tension, uniaxial compression, and biaxial equal compression stress conditions were compared with those of plain concrete. The true triaxial damage ratio strength criterion can be reduced to the conventional triaxial criterion and biaxial criterion, and the corresponding simplified strength criteria were proposed. The proposed dimensionless six-parameter criterion agrees well with the experimental results of the aforementioned materials for true triaxial, conventional triaxial, and biaxial loading conditions. Compared with the strength criteria in other studies, the proposed criterion can accurately represent the strength characteristics of FRC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.