Abstract

The nickel-base alloy Inconel 718 exhibits a strength-differential, that is, a different plastic flow behavior in uniaxial tension and uniaxial compression. A phenomenological viscoplastic model founded on thermodynamics has been extended for material behavior that deviates from classical metal plasticity by including all three stress invariants in the threshold function. The model can predict plastic flow in isotropic materials with or without a flow stress asymmetry as well as with or without pressure dependence. Viscoplastic material parameters have been fit to pure shear, uniaxial tension, and uniaxial compression experimental results at 650°°C. Threshold function material parameters have been fit to the strength-differential. Four classes of threshold functions have been considered and nonproportional loading of hollow tubes, such as shear strain followed by axial strain, has been used to select the most applicable class of threshold function for the multiaxial model as applied to Inconel 718 at 650 °C. These nonproportional load paths containing corners provide a rigorous test of a plasticity model, whether it is time-dependent or not. A J 2 J 3 class model, where J 2 and J 3 are the second and third effective deviatoric stress invariants, was found to agree the best with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call