Abstract

Profile-cast provides a novel data dissemination paradigm in mobile opportunistic networks, allowing messages to be disseminated to nodes based on their profiles rather than network identities. Profile-cast has attracted increasing attention, but most of existing algorithms cannot account for some scenarios where multiple attributes need to be considered simultaneously in a profile. We focus on the multi-attribute profile-cast (MapCast) paradigm, where the node’s profile is represented by a multi-dimensional vector, which may contain multiple attributes of the node such as its behavior, interest, social information, etc. First, we consider a scenario with a fixed source node. We construct a message dissemination tree using the node encounter history. Then we propose a dissemination tree based MapCast algorithm, which adapts a heuristic search algorithm to select relay nodes so that the destination node can receive the message as soon as possible and the network has a low overhead. Second, we consider a more complex scenario with unfixed source nodes. In this scenario, the concept of group profile is defined, and a new high-efficient algorithm, group-profile based MapCast (G-MapCast), is proposed to limit the scope of message forwarding to the nodes whose profile or group profile satisfies certain delivery conditions. To further reduce the network overhead, we propose a network coding based MapCast algorithm on the basis of G-MapCast. Finally, we provide simulation results based on two real human contact datasets and verify the effectiveness and superiority of our algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call