Abstract

Data augmentation has been widely studied as it can be used to improve the generalizability of graph representation learning models. However, existing works focus only on the data augmentation on homogeneous graphs. Data augmentation for heterogeneous graphs remains under-explored. Considering that heterogeneous graphs contain different types of nodes and links, ignoring the type information and directly applying the data augmentation methods of homogeneous graphs to heterogeneous graphs will lead to suboptimal results. In this paper, we propose a novel Multi-Aspect Heterogeneous Graph Augmentation framework named MAHGA. Specifically, MAHGA consists of two core augmentation strategies: structure-level augmentation and metapath-level augmentation. Structure-level augmentation pays attention to network schema aspect and designs a relation-aware conditional variational auto-encoder that can generate synthetic features of neighbors to augment the nodes and the node types with scarce links. Metapath-level augmentation concentrates on metapath aspect, which constructs metapath reachable graphs for different metapaths and estimates the graphons of them. By sampling and mixing up based on the graphons, MAHGA yields intra-metapath and inter-metapath augmentation. Finally, we conduct extensive experiments on multiple benchmarks to validate the effectiveness of MAHGA. Experimental results demonstrate that our method improves the performances across a set of heterogeneous graph learning models and datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call