Abstract
The emergent field of computational photography is proving that, by coupling generalized imaging optics with software processing, the quality and flexibility of imaging systems can be increased. In this paper, we capture and manipulate multiple images of a scene taken with different aperture settings (f-numbers). We design and implement a prototype optical system and associated algorithms to capture four images of the scene in a single exposure, each taken with a different aperture setting. Our system can be used with commercially available DSLR cameras and photographic lenses without modification to either. We leverage the fact that defocus blur is a function of scene depth and f/# to estimate a depth map. We demonstrate several applications of our multi-aperture camera, such as post-exposure editing of the depth of field, including extrapolation beyond the physical limits of the lens, synthetic refocusing, and depth-guided deconvolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.