Abstract

The smart power grid blends the bidirectional energy with information flow. Compared to the traditional power grid, it requires more intelligent and faster control, protection, automation, and communication techniques. Ultimately, power system protection, fault location, and isolation have to go through an immense modernization process since the previously used protection techniques are no longer usable in the smart grid. This is due to the bidirectional flow of energy and dynamics of the network configuration in the smart grid. Multiagent Systems (MAS) techniques can enable the power system to become smarter, reliable, self-healing, and robust. Its decentralized nature and operational robustness make the MAS application a leading technology. In this paper, the MAS architecture that suits the smart grid application is proposed. Besides, a detailed systematic review on the application of MAS to smart grid protection is conducted. The MAS application for self-healing of the smart grid through Fault Location, Isolation, and Service Restoration (FLISR) is also investigated. Furthermore, based on the MAS architecture, fault identification technique, simulation, and verification methods implemented, a comparison is made among the ongoing research activities on power system protection and FLISR. Consequently, the research gap on power system protection, FLISR, and self-healing is indicated. Finally, the use of IEC 61850 for implementing the MAS technique is discussed. As a result, the use of MAS for adaptive smart grid protection, the challenges in the implementation of the communication among the agents and outside laboratory application of the MAS for the power systems are the research topics that require further work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.