Abstract

In this article, a novel hybrid multirobot motion planner that can be applied under no explicit communication and local observable conditions is presented. The planner is model-free and can realize the end-to-end mapping of multirobot state and observation information to final smooth and continuous trajectories. The planner is a front-end and back-end separated architecture. The design of the front-end collaborative waypoints searching module is based on the multiagent soft actor-critic (MASAC) algorithm under the centralized training with decentralized execution (CTDE) diagram. The design of the back-end trajectory optimization module is based on the minimal snap method with safety zone constraints. This module can output the final dynamic-feasible and executable trajectories. Finally, multigroup experimental results verify the effectiveness of the proposed motion planner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.