Abstract

Ahstract-Transforming to a low-carbon future requires massive efforts from both transport and power systems. Electric vehicles (EVs) can reduce CO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> emission in road transport through eco-routing while providing carbon intensity service for power systems via vehicle-to-grid (V2G) scheduling. This paper studies the coordinated effect of routing and scheduling problems of EVs via a novel model-free multi-agent reinforcement learning (MARL) method. In this context, EVs do not reply on any knowledge of the simulated environment and are capable of handling the system with various uncertainties and dynamics during the learning process, which can lead to timely decision making and better privacy protection. Extensive case studies based on a virtual 7-node 10-edge transportation network are developed to demonstrate the effectiveness of the proposed MARL method on reducing carbon emissions in the transportation system and providing carbon intensity service in the power system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call