Abstract

Due to the non-stationary environment, learning in multi-agent systems is a challenging problem. This paper first introduces a new gradient-based learning algorithm, augmenting the basic gradient ascent approach with policy prediction. We prove that this augmentation results in a stronger notion of convergence than the basic gradient ascent, that is, strategies converge to a Nash equilibrium within a restricted class of iterated games. Motivated by this augmentation, we then propose a new practical multi-agent reinforcement learning (MARL) algorithm exploiting approximate policy prediction. Empirical results show that it converges faster and in a wider variety of situations than state-of-the-art MARL algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.