Abstract
In cooperative multi-agent robotic systems, coordination is necessary in order to complete a given task. Important examples include search and rescue, operations in hazardous environments, and environmental monitoring. Coordination, in turn, requires simultaneous satisfaction of safety critical constraints, in the form of state and input constraints, and a connectivity constraint, in order to ensure that at every time instant there exists a communication path between every pair of agents in the network. In this work, we present a model predictive controller that tackles the problem of performing multi-agent coordination while simultaneously satisfying safety critical and connectivity constraints. The former is formulated in the form of state and input constraints and the latter as a constraint on the second smallest eigenvalue of the associated communication graph Laplacian matrix, also known as Fiedler eigenvalue, which enforces the connectivity of the communication network. We propose a sequential quadratic programming formulation to solve the associated optimization problem that is amenable to distributed optimization, making the proposed solution suitable for control of multi-agent robotics systems relying on local computation. Finally, the effectiveness of the algorithm is highlighted with a numerical simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.