Abstract

In the Multiagent Connected Path Planning problem (MCPP), a team of agents moving in a graph-represented environment must plan a set of start-goal joint paths which ensures global connectivity at each time step, under some communication model. The decision version of this problem asking for the existence of a plan that can be executed in at most a given number of steps is claimed to be NP-complete in the literature. The NP membership proof, however, is not detailed. In this paper, we show that, in fact, even deciding whether a feasible plan exists is a PSPACE-complete problem. Furthermore, we present three algorithms adopting different search paradigms, and we empirically show that they may efficiently obtain a feasible plan, if any exists, in different settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.