Abstract
This paper proposes an adaptive reinforcement co-learning method for solving congestion control problems on high-speed networks. Conventional congestion control scheme regulates source rate by monitoring queue length restricted to a predefined threshold. However, the difficulty of obtaining complete statistics on input traffic to a network. As a result, it is not easy to accurately determine the effective thresholds for high-speed networks. We proposed a simple and robust Co-learning Multi-agent Congestion Controller (CMCC), which consists of two subsystems: a long-term policy evaluator and a short-term rate selector incorporated with a co-learning reinforcement signal to solve the problem. The well-trained controllers can adaptively take correct actions to regulate source flow under time-varying environments. Simulation results showed the proposed approach can promote the system utilization and decrease packet losses simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.