Abstract
With the rapid advancement and widespread applications of information technology in the manufacturing shop floor, a huge amount of real-time data is generated, providing a good opportunity to effectively respond to unpredictable exceptions so that the productivity can be improved. Thus, how to schedule the manufacturing shop floor for achieving such a goal is very challenging. This paper addresses this issue and a new multiagent-based real-time scheduling architecture is proposed for an Internet of Things-enabled flexible job shop. Differing from traditional dynamic scheduling strategies, the proposed strategy optimally assigns tasks to machines according to their real-time status. A bargaining-game-based negotiation mechanism is developed to coordinate the agents so that the problem can be efficiently solved. To demonstrate the feasibility and effectiveness of the proposed architecture and scheduling method, a proof-of-concept prototype system is implemented with Java agent development framework platform. A case study is used to test the performance and effectiveness of the proposed method. Through simulation and comparison, it is shown that the proposed method outperforms the traditional dynamic scheduling strategies in terms of makespan, critical machine workload, and total energy consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.