Abstract
Abstract Wildfires pose increasing risks to human health and properties in North America. Due to large uncertainties in fire emission, transport, and chemical transformation, it remains challenging to accurately predict air quality during wildfire events, hindering our collective capability to issue effective early warnings to protect public health and welfare. Here, we present a new real-time Hazardous Air Quality Ensemble System (HAQES) by leveraging various wildfire smoke forecasts from three U.S. federal agencies (NOAA, NASA, and Navy). Compared to individual models, the HAQES ensemble forecast significantly enhances forecast accuracy. To further enhance forecasting performance, a weighted ensemble forecast approach was introduced and tested. Compared to the unweighted ensemble mean, the multilinear regression weighted ensemble reduced fractional bias by 34% in the major fire regions, false alarm rate by 72%, and increased hit rate by 17%. Finally, we improved the weighted ensemble using quantile regression and weighted regression methods to enhance the forecast of extreme air quality events. The advanced weighted ensemble increased the PM2.5 exceedance hit rate by 55% compared to the ensemble mean. Our findings provide insights into the development of advanced ensemble forecast methods for wildfire air quality, offering a practical way to enhance decision-making support to protect public health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.