Abstract

This paper introduces the multiaccess mesh (or multimesh) network. Stations are arranged in a two-dimensional (2-D) mesh in which each row and column functions as a conventional linear local-area network (LAN) or metropolitan-area network (MAN) subnetwork. Full connectivity is achieved by enabling stations to merge their row and column subnetworks, under the coordination of a merge control protocol. A two-dimensional token-passing protocol is considered, and a more complex protocol motivated by max-min fairness is also presented. Like conventional LANs and MANs, the multimesh requires no transit routing or store-and-forward buffering. The multimesh is a generalization of the token grid network. Using analysis and simulation, we study the capacity of multimeshes constructed of token rings and slotted rings, under uniform and nonuniform loads. A multimesh can support much higher throughput than conventional linear LAN and MAN networks with the same transmission hardware. Moreover, the multimesh capacity grows with the number of stations, We also present a healing mechanism that ensures full network connectivity regardless of the number of failed stations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call