Abstract

Recently, Internet of Vehicles (IoV) and Machine Learning (ML) have attracted more and more attention. Considering inefficient real-time training and high requirements on computing capabilities of centralized data collection, performing Distributed Machine Learning (DML) in IoV has become an important research branch. However, the heterogeneity, mobility, and distrust among IoV nodes affect how to execute DML effectively, securely, and in a salable manner. In this paper, a blockchain-based Cooperative Learning framework combined with a Deep Compression method (CLDC) is proposed. First, we improve the local training efficiency of lightweight IoV nodes by using deep compression method. Meanwhile, we have introduced a blockchain system in CLDC, the significance of which is that we have completed the transformation from centralized architecture to distributed framework through the blockchain, and shared local training results in a verifiable manner. The framework uses non-tamperable features of the blockchain to ensure the security of local training results. Moreover, we propose a Learning-based Redundant Byzantine Fault Tolerance (L-RBFT) protocol, in which the primary node needs to confirm the loss percentage of learning in the transaction before forwarding the RBFT messages. The significance of L-RBFT is to ensure that IoV nodes obtain the best training results through the consensus of blockchain nodes. We use it to solve the computing and communication resource allocation problem in IoV to clarify the operating mechanism of the proposed framework. The experimental results prove that this scheme performs better when compared with the traditional centralized deep reinforcement learning method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call