Abstract
Ultraviolet (UV) light-catalyzed Paternò-Büchi (PB) reaction has been developed as an efficient lipid C=C double bond (DB) derivatization strategy, which can accurately assign the position of C=C bond in unsaturated lipids when coupled with tandem mass spectrometry (MS/MS). Inspired by this, here we proposed a novel visible-light induced [2+2] cycloaddition reaction combined with ESI-MS/MS and MALDI-MS/MS to identify lipid C=C position isomers. Benz[g]isoquinoline-5,10-dione (BIQD) and 6,9-difluorobenzo[g]isoquinoline-5,10-dione (DF-BIQD) were developed as a new type of [2+2] cycloaddition reagent, which can not only react with C=C bond under 254 nm UV light irradiation, but also quickly combine with lipid C=C bond under the irradiation of 405 nm visible-light and > 400 nm compact fluorescent lamp visible-light. High cycloaddition reaction conversion efficiency can be achieved by irradiating under compact fluorescent lamp light for 2 min. Moreover, we discovered that 437 nm, 489 nm, 545 nm, 581 nm, and 613 nm monochromatic light appearing in compact fluorescent lamp can individually induce the [2 + 2] cycloaddition reaction between DF-BIQD and unsaturated lipids. Using this method, we found that the expressions of lipid DB-positional isomers in rat heart, brain, lung, spleen, thymus, kidney, liver and plasma vary greatly. The relative content of FA-18:1 (Δ9) in rat heart is only 1.49 times that of FA-18:1 (Δ11), while the relative content of FA-18:1 (Δ9) in rat plasma is 5.20 times that of FA-18:1 (Δ11). The above results offer new insight into the development of photocatalytic reagent for visible-light induced [2+2] cycloaddition and structural lipidomic studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.