Abstract
To fight the "silent killer" hypertension, continuous blood pressure (BP) monitoring has been one of the most desired functions in wearable electronics. However, current BP measuring principles and protocols either involve a vessel occlusion process with a cuff or require multiple sensing nodes on the body, which makes it difficult to implement them in compact wearable electronics like smartwatches and wristbands with long-term wearability. In this work, we proposed a highly compact multi-wavelength photoplethysmography (MWPPG) module and a depth-resolved MWPPG approach for continuous monitoring of BP and systemic vascular resistance (SVR). By associating the wavelength-dependent light penetration depth in the skin with skin vasculatures, our method exploited the pulse transit time (PTT) on skin arterioles for tracking SVR (n = 20). Then, we developed an arteriolar PTT-based method for beat-to-beat BP measurement. The BP estimation accuracy of the proposed arteriolar PTT method was validated against Finometer (n = 20) and the arterial line (n = 4). The correlation between arteriolar PTT and SVR was theoretically deduced and experimentally validated on 20 human subjects performing various maneuvers. The proposed arteriolar PTT-based method outperformed the traditional arterial PTT-based method with better BP estimation accuracy and simpler measurement setup, i.e., with a single sensing node. The proposed depth-resolved MWPPG method can provide accurate measurements of SVR and BP, which are traditionally difficult to measure in a noninvasive or continuous fashion. This MWPPG work provides the wearable healthcare electronics of compact size with a low-cost and physiology-based solution for continuous measurement of BP and SVR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.