Abstract
Detecting small changes in spectral fingerprints at multiple wavelength bands simultaneously is challenging for many spectroscopic techniques. Because power variations, drift, and thermal fluctuations can affect such measurements on different timescales, high speed lock-in detection is the preferred method, however this is typically a single channel (wavelength) technique. Here, a way to achieve multichannel (multi-wavelength) lock-in vibrational spectroscopy is reported, using acousto-optic modulators to convert nanosecond periodic temporal perturbations into spatially distinct spectra. This simultaneously resolves perturbed and reference spectra, by projecting them onto different locations of the spectrometer image. As an example, we apply this multichannel time-resolved methodology to detect molecular frequency upconversion in plasmonic nanocavities from the perturbed Raman scattering at different wavelengths. Our phase-sensitive detection scheme can be applied to any spectroscopy throughout the visible and near-infrared wavelength ranges. Extracting perturbed spectra for measurements on nanosecond timescales allows for capturing many processes, such as semiconductor optoelectronics, high-speed spectro-electrochemistry, catalysis, redox chemistry, molecular electronics, or atomic diffusion across materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.