Abstract

Multi-wavelength continuous-wave self-Raman laser with an a-cut composite YVO4/Nd:YVO4/YVO4 crystal pumped by an 879-nm wavelength-locked laser diode is demonstrated for the first time. Multi-wavelength Raman lasers at 1168.4, 1176, 1178.7, and 1201.6 nm are achieved by the first Stokes shift of the multi-wavelength fundamental lasers at 1064, 1066.7, 1073.6, 1084, and 1085.6 nm with two Raman shifts of 890 and 816 cm−1. A maximum Raman output power of 2.56 W is achieved through the use of a 20-mm-long composite crystal, with a corresponding optical conversion efficiency of 9.8%. The polarization directions of different fundamental and Raman lasers are investigated and found to be orthogonal π and σ polarizations. These orthogonally polarized multi-wavelength lasers with small wavelength separation pave the way to the development of a potential laser source for application in spectral analysis, laser radar and THz generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call