Abstract
There has been significant recent progress in the implementation of integrated non-reciprocal components based on linear periodically time-varying (LPTV) circuits. Nevertheless, integrated circulators still require a leap forward in power handling, clock power consumption, and insertion loss (IL) to become compelling compared with ferrite circulators or integrated reciprocal alternatives, such as the electrical-balance duplexer (EBD). This article introduces three innovations: 1) a new switched-capacitor clock-boosting scheme; 2) high-Bragg-frequency quasi-distributed transmission lines based on periodically loaded inductors; and 3) a new gyrator based on switched partially reflecting t-lines—which enable significant performance improvement for integrated circulators and for LPTV circuits more broadly. These are showcased in a 1-GHz 180-nm SOI CMOS circulator that exhibits 2.1-/2.6-dB TX-ANT/ANT-RX IL (0.3 dB better than prior art), +34-dBm TX-ANT P1 dB (2.5 $\times $ or 4 dB better), and 40% lower chip area, all at 39-mW power consumption (4.4 $\times $ lower).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.