Abstract

Herein, a promising rationally-designed, high surface area multi-walled vanadium oxide nanotubes (VOx NTs) with a large interlayer spacing (6.5 Å) has been demonstrated as a cathodic dopant for efficient hybrid capacitive deionization (c-HCDI). The VOx NTs enhanced the surface charge of the 3D microporous graphene-like carbon, derived from natural palm tree (CNPT), as verified by Raman profiles and potential of zero charge measurements. The CDI batch-fashion testing has been performed using large surface area electrodes (6 × 7 cm2) and 135 ml of saline NaCl electrolyte. Interestingly, the used c-HCDI showed high salt adsorption capacity (SAC) of 25.0 mg/g for 6 mM NaCl at 1.6 V compared to the symmetric capacitive deionization configuration (s-CDI) that is only sustaining 16.0 mg/g. Besides, the cell demonstrates efficient stable SAC regardless of the initial feed concentration (1.6–25 mM) of NaCl. The charge efficiency of the c-HCDI markedly raised by around 25% over s-CDI for 5 mM NaCl, indicating the improved permselective manner of sodium ion diffusion/intercalation at the VOx NTs/CNPT cathode. Most importantly, the c-HCDI demonstrates a superior salt adsorption retention of 94.7% after 50 successive charge/discharge cycles compared to s-CDI that showed a decline of 7% after only 15 cycles. The Improved surface charge and wettability together with the pseudocapacitive storage manner of the cathode composite illustrate the synergism obtained via the hybrid configuration..

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.