Abstract
AbstractThis work reports for the first time the development of a reagentless enzymatic amperometric biosensor for ethanol based on the use of a glassy carbon electrode (GCE) modified with multi‐walled carbon nanotubes (MWCNTs) non‐covalently functionalized with polyarginine (Polyarg) as platform for the robust immobilization of alcohol dehydrogenase (ADH) and NAD+. The new strategy allows to obtain an integrated GCE/MWCNTs‐Polyarg/NAD+‐ADH ethanol biosensor with important advantages compared to the existing ethanol biosensors: avoids the external addition of the cofactor for each measurement, ensures a fast and sensitive quantification of ethanol due to the intimate interaction of the components, and allows the detection at considerably lower potentials due to the catalytic activity of the carbon nanostructures. These unique properties have made possible a very efficient ethanol quantification with a sensitivity of (1487±6) μA M−1, detection limit of 0.65 μM, response time of 8 s, and reproducibility of 5.5 % with a very successful application for the quantification of ethanol in different commercial beverages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.