Abstract

Recent observations have demonstrated that nanomaterials may be toxic to human tissue. While the ability of nano-scaled particulate matter is known to cause a range of problems in respiratory system, recent observations suggest that the nervous system may be vulnerable as well. In the current paper we asked whether exposure of primary neuronal cell cultures to nanoparticles might compromise regenerative axon growth. Regenerative response was triggered by performing a conditioning lesion of sciatic nerve five days prior to collection of dorsal root ganglia (DRG). DRG neurons were plated at a low density and incubated with multi-walled carbon nanotubes (MWCNTs) (0.1–10 μg/ml in 10% of surfactant in saline) overnight. The experiments showed that exposure of DRG cultures to MWCNT significantly impaired regenerative axonogenesis without concomitant cell death. These results indicate that MWNCTs may have detrimental effect on nerve regeneration and may potentially trigger axonal pathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.