Abstract

Multi-walled carbon nanotubes (MWCNTs) are known to induce pulmonary inflammatory effects through stimulating pro-inflammatory cytokine secretion from alveolar macrophages. Despite extensive studies on MWCNTs’ pro-inflammatory reactivity, the understanding of molecular mechanisms involved is still incomplete. In this study, we investigated hemichannel’s involvement in MWCNTs-induced macrophage IL-1β release. Our results showed that the unmodified and COOH MWCNTs could induce ATP release and ATP-P2X7R axis-dependent IL-1β secretion from THP-1 macrophages. By using various inhibitors, we confirmed that the MWCNTs-induced ATP release was primarily through hemichannels. EtBr dye uptake assay detected significant hemichannels opening in MWCNTs exposed THP-1 macrophages. Inhibition of hemichannels by CBX, 43Gap27, or 10Panx1 pretreatment results in decreased ATP and IL-1β release. The addition of ATP restored the reduced IL-1β secretion level from hemichannel inhibition. We also confirmed with five other types of MWCNTs that the induction of hemichannels by MWCNTs strongly correlates with their capacity to induce IL-1β secretion. Taken together, we conclude that hemichannels-mediated ATP release and subsequent NLRP3 inflammasome activation through P2X7R may be one mechanism by which MWCNTs induce macrophage IL-1β secretion. Our findings may provide a novel molecular mechanism for MWCNTs induced IL-1β secretion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call