Abstract

To date is emergent the development of novel coatings to protect erosion, especially to preventive dentistry and restorative dentistry. Here, for the first time we report the effectiveness of multi-walled carbon nanotube/graphene oxide hybrid carbon-base material (MWCNTO-GO) combined with nanohydroxyapatite (nHAp) as a protective coating for dentin erosion. Fourier transform Raman spectroscopy (FT-Raman), scanning electron (SEM), and transmission electron (TEM) microscopy were used to investigated the coatings and the effect of acidulated phosphate fluoride gel (APF) treatment on bovine teeth root dentin before and after erosion. The electrochemical corrosion performance of the coating was evaluated. Raman spectra identified that: (i) the phosphate (ν1PO43−) content of dentin was not significantly affected by the treatments and (ii) the carbonate (ν1CO32−) content in dentin increased when nHAp was used. However, the nHAp/MWCNTO-GO composite exposited lower levels of organic matrix (CH bonds) after erosion compared to other treatments. Interesting, SEM micrographs identified that the nHAp/MWCNTO-GO formed layers after erosive cycling when associate with APF treatment, indicating a possible chemical bond among them. Treatments of root dentin with nHAp, MWCNTO-GO, APF_MWCNTO-GO, and APF_nHAp/MWCNTO-GO increased the carbonate content, carbonate/phosphate ratio, and organic matrix band area after erosion. The potentiodynamic polarization curves and Nyquist plot showed that nHAp, MWCNT-GO and nHAp/MWCNT-GO composites acted as protective agents against corrosion process. Clearly, the nHAp/MWCNTO-GO composite was stable after erosive cycling and a thin and acid-resistant film was formed when associated to APF treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.