Abstract

Two novel heterogeneous nickel α-diimine based polymerization catalysts, containing MWCNT as the main ligand, were synthesized by novel in situ catalyst preparation technique. The in situ synthesis was performed by covalent attachment of the acenaphthenic ligand core to amine functionalized MWCNT ligand arms through diimine bonding and further nickel dibromide chelation. The prepared catalysts were fully characterized and their structures and supporting efficiencies were determined. Single or double introduction of the MWCNTs through their ends or sidewall(s) in the catalytic system, as a ligand, influenced the catalytic performance, microstructure and morphology of obtained polyethylenes. MWCNT sidewall bonding to para-aryl position of the tetramethylphenyl moiety performed as more electron-donating ligand than MWCNT ends linked to the imine bond and protected the catalytic system to retain its activity. This character resulted in the maintenance of the resulting polymer topology at elevated temperatures so that the catalytic activity and the obtained polymer melting points remained around 110 g PE∙mmol−1 Ni∙h−1 and 123 °C in all polymerization temperatures respectively. In polymerization trials, molecular weight fall against temperature was not as sharp as what had been observed in sequentially prepared catalysts insofar as the molecular weight of resultant polymer at 60 °C reached to 310000 g∙mol−1 which was close to the highest value had been reported at 30 °C for sequentially prepared catalysts. TEM observations showed the presence of the stopped-growth polymer chains due to geometrical constrains or ligand debonding for both catalytic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.