Abstract

This manuscript presents an experimental investigation of the friction and wear properties of poly (methyl methacrylate) (PMMA) nanocomposites reinforced with functionalized multi-walled carbon nanotubes (MWCNTs). The aim of this study is to evaluate the potential of MWCNTs as a reinforcement material for enhancing the tribological performance of PMMA. Three types of multi-walled carbon nanotubes, i.e., pristine, hydroxyl functionalized, and carboxyl functionalized, were utilized in this study. The nanocomposite samples were prepared by dispersing varying concentrations of MWCNTs (0.1 wt.%, 0.5 wt.%, and 1 wt.%) within the PMMA matrix via a 3D mixing approach, followed by injection molding/compression molding. The resulting nanocomposite films were characterized using scanning electron microscopy (SEM) to observe the dispersion of MWCNTs within the PMMA matrix. The friction and wear tests were conducted using a pin-on-disk tribometer under dry sliding conditions. The effects of functionalization and MWCNT content on the tribological behaviors of the nanocomposites were analyzed. The nanocomposites exhibited lower friction coefficients and reduced wear rates compared to pure PMMA. The lowest friction coefficient and wear rate were achieved at an optimum MWCNT loading of 0.5 wt.%. It was further revealed that the amount of MWCNT reinforcement, average load, and track diameter significantly affect the coefficient of friction (COF) and rate of wear. The COF and wear rate are best at a filler loading of 0.5 wt.%, a 20 Kg load, and 90 mm. The improved tribological performance of the MWCNT-reinforced PMMA nanocomposites can be attributed to the effective transfer of load between the MWCNTs and the PMMA matrix, as well as the reinforcement effect of the MWCNTs. The MWCNTs acted as reinforcing agents, enhancing the mechanical properties and wear resistance of the nanocomposites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.