Abstract
This work reports the design of a resistive gas sensor based on 2D mats of multi-walled carbon nanotubes (MWCNT). The sensor sensitivity was optimised using chlorine by tuning both MWCNT network morphology and MWCNT electronic properties. Raw CNT were compared with annealed CNT. Besides, with the aim to enhance the sensor sensitivity and selectivity for detection of several gases, MWCNT were functionalized with poly (phenylene)-like or vinyl polymers using a process based on the diazonium chemistry. In this paper, we will mention the preparation of such sensors and we will demonstrate that the optimized devices are operating at room temperature, for the detection of pollutants such as chlorine, hydrogen chloride and ammonia. Such sensors are able to detect down to 30 ppb of pollutant, in particular for chlorine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.