Abstract
This paper proposes a novel multi-view discriminant analysis based on Hilbert-Schmidt Independence Criterion (HSIC) and canonical correlation analysis (CCA). We use HSIC to identify a lower dimensional discriminant common subspace in which the dependence between multi-view features and the associated labels is maximized. CCA is utilized to achieve maximum correlation between different views in the common subspace. Motivated by the successful application of uncorrelated discriminant analysis, we further extend our approach to extract features with minimum redundancy. Experimental results validate the effectiveness of our proposed approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.