Abstract

Multi-view representation learning attempts to learn a representation from multiple views and most existing methods are unsupervised. However, representation learned only from unlabeled data may not be discriminative enough for further applications (e.g., clustering and classification). For this reason, semi-supervised methods which could use unlabeled data along with the labeled data for multi-view representation learning need to be developed. Manifold information plays an important role in semi-supervised learning, but it has not been considered for multi-view representation learning. In this paper, we introduce the manifold smoothness into multi-view representation learning and propose MvDGAT which learns the representation and the intrinsic manifold simultaneously with graph attention network. Experiments conducted on real-world datasets reveal that our MvDGAT can achieve better performance than state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.