Abstract
Identifying circular RNA (circRNA)-drug sensitivity association (CDsA) is crucial for advancing drug development. As conducting traditional wet experiments for determining CDsA is costly and inefficient, calculation methods have already proven to be a valid approach to cope with this problem. However, there exists limited research addressing the prediction of the CDsA prediction problem, and certain discrepancies persist, particularly concerning false-negative associations. As a consequence, we present a multi-view framework, called MAGSDMF, for identifying latent CDsA. Firstly, MAGSDMF applies Multiple Attention mechanisms and Graph learning methods to dynamically extract features and strengthen the features of inside and across multi-similarity networks of circRNA and drug. Secondly, the Stack Deep Matrix Factorization (SDMF) is devised to directly extract features from CDsAs. We consider multi-similarity networks with the original CDsAs as multi-view information. Thirdly, MAGSDMF utilizes a multiattention channel mechanism to integrate these features for the purpose of reconstructing CDsA. Finally, MAGSDMF performs another DMF based on the reconstruction to identify the latent CDsAs. Simultaneously, contrastive learning (CL) is implemented to enhance the generalization capability of MAGSDMF and oversee the learning process of the underlying links prediction task. In comparative experiments, MAGSDMF achieves superior performance on two datasets with AUC values of 0.9743 and 0.9739 based on 5-fold cross-validation. Moreover, in case studies, the achievements further validate the identification reliability of MAGSDMF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.