Abstract

Topic models, such as probabilistic latent semantic analysis (PLSA) and latent Dirichlet allocation (LDA), have shown impressive success in many fields. Recently, multi-view learning via probabilistic latent semantic analysis (MVPLSA), is also designed for multi-view topic modeling. These approaches are instances of generative model, whereas they all ignore the manifold structure of data distribution, which is generally useful for preserving the nonlinear information. In this paper, we propose a novel multiple graph regularized generative model to exploit the manifold structure in multiple views. Specifically, we construct a nearest neighbor graph for each view to encode its corresponding manifold information. A multiple graph ensemble regularization framework is proposed to learn the optimal intrinsic manifold. Then, the manifold regularization term is incorporated into a multi-view topic model, resulting in a unified objective function. The solutions are derived based on the Expectation Maximization optimization framework. Experimental results on real-world multi-view data sets demonstrate the effectiveness of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.