Abstract

The wet-dog shake behavior (WDS) is a short-duration behavior relevant to the study of various animal disease models, including acute seizures, morphine abstinence, and nicotine withdrawal. However, no animal behavior detection system has included WDS. In this work, we present a multi-view animal behavior detection system based on image classification and use it to detect rats' WDS behavior. Our system uses a novel time-multi-view fusion scheme that does not rely on artificial features (feature engineering) and is flexible to adapt to other animals and behaviors. It can use one or more views for higher accuracy. We tested our framework to classify WDS behavior in rats and compared the results using different amounts of cameras. Our results show that the use of additional views increases the performance of WDS behavioral classification. With three cameras, we achieved a precision of 0.91 and a recall of 0.86. Our multi-view animal behavior detection system represents the first system capable of detecting WDS and has potential applications in various animal disease models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.