Abstract

Human action recognition based on depth video sequence is an important research direction in the field of computer vision. The present study proposed a classification framework based on hierarchical multi-view to resolve depth video sequence-based action recognition. Herein, considering the distinguishing feature of 3D human action space, we project the 3D human action image to three coordinate planes, so that the 3D depth image is converted to three 2D images, and then feed them to three subnets, respectively. With the increase of the number of layers, the representations of subnets are hierarchically fused to be the inputs of next layers. The final representations of the depth video sequence are fed into a single layer perceptron, and the final result is decided by the time accumulated through the output of the perceptron. We compare with other methods on two publicly available datasets, and we also verify the proposed method through the human action database acquired by our Kinect system. Our experimental results demonstrate that our model has high computational efficiency and achieves the performance of state-of-the-art method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.