Abstract
sEMG(surface electromyography) signals have been widely used in rehabilitation medicine in the past decades because of their non-invasive, convenient and informative features, especially in human action recognition, which has developed rapidly. However, the research on sparse EMG in multi-view fusion has made less progress compared to high-density EMG signals, and for the problem of how to enrich sparse EMG feature information, a method that can effectively reduce the information loss of feature signals in the channel dimension is needed. In this article, a novel IMSE (Inception-MaxPooling-Squeeze- Excitation) network module is proposed to reduce the loss of feature information during deep learning. Then, multiple feature encoders are constructed to enrich the information of sparse sEMG feature maps based on the multi-core parallel processing method in multi-view fusion networks, while SwT (Swin Transformer) is used as the classification backbone network. By comparing the feature fusion effects of different decision layers of the multi-view fusion network, it is experimentally obtained that the fusion of decision layers can better improve the classification performance of the network. In NinaPro DB1, the proposed network achieves 93.96% average accuracy in gesture action classification with the feature maps obtained in 300ms time window, and the maximum variation range of action recognition rate of individuals is less than 11.2%. The results show that the proposed framework of multi-view learning plays a good role in reducing individuality differences and augmenting channel feature information, which provides a certain reference for non-dense biosignal pattern recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.